Abstract. Let A_1, B_1, C_1 be points chosen on the sidelines BC, CA, BA of a triangle ABC, respectively. The circumcircles of triangles $AB_1C_1, BC_1A_1, CA_1B_1$ intersect the circumcircle of triangle ABC again at points A_2, B_2, C_2 respectively. We prove that triangle $A_2B_2C_2$ is similar to triangle $A_3B_3C_3$, where A_3, B_3, C_3 are symmetric to A_1, B_1, C_1 with respect to the midpoints of the sides BC, CA, BA respectively.

Theorem 1. Let A_1, B_1, C_1 be points chosen on the sidelines BC, CA, BA of a triangle ABC, respectively. The circumcircles of triangles $AB_1C_1, BC_1A_1, CA_1B_1$ intersect the circumcircle of triangle ABC again at points A_2, B_2, C_2 respectively. Points A_3, B_3, C_3 are symmetric to A_1, B_1, C_1 with respect to the midpoints of the sides BC, CA, BA respectively. Then the triangles $A_2B_2C_2$ and $A_3B_3C_3$ are similar.
Preliminary. Let us introduce some notions and formulate known lemmas that we use in the proof.

We will work with oriented angles between lines. For two straight lines ℓ, m in the plane, $\angle(\ell, m)$ denotes the angle of counterclockwise rotation which transform line ℓ into a line parallel to m (the choice of the rotation centre is irrelevant). This is signed quantity; values differing by a multiple of π are identified, so that $\angle(\ell, m) = -\angle(m, \ell)$, $\angle(\ell, m) + \angle(m, n) = \angle(\ell, n)$.

If ℓ is the line through the points K, L and m is the line through M, N, one writes $\angle(KL, MN)$ for $\angle(\ell, m)$; the characters K, L are freely interchangeable; and so are M, N. The counterpart of the classical theorem about cyclic quadrilaterals is the following:

Lemma 1. Four non-collinear points K, L, M, N are concyclic if and only if

$$\angle(KM, LM) = \angle(KN, LN).$$

Further we use (1) without explicit reference.

Lemma 2. Suppose that A_1, B_1, C_1 are points on the sidelines BC, CA, BA of a triangle ABC, respectively; then the three circles (AB_1C_1), (BC_1A_1), (CA_1B_1) have a common point.

Proof. Let (AB_1C_1) and (BC_1A_1) intersect at C_1 and P. Then

$$\angle(PA_1, CA_1) = \angle(PA_1, BA_1) = \angle(PC_1, BC_1) = \angle(PC_1, AC_1) = \angle(PB_1, AB_1) = \angle(PB_1, CB_1).$$

The equality between the outer terms shows that the points A_1, B_1, P, C are concyclic. Thus P is the common point of the three mentioned circles. □
Lemma 3. Let A_1, B_1, C_1 be points on the sidelines BC, CA, BA of a triangle ABC, respectively; and the circles $(AB_1C_1), (BC_1A_1), (CA_1B_1)$ meet at P. Suppose that the lines AP, PB, CP meet the circle (ABC) again at A', B', C', respectively; then triangles $A_1B_1C_1$ and $A'B'C'$ are similar. (In particular, the pedal triangle of P is similar to $A'B'C'$.)

Proof. We have

\[\angle(A_1B_1, C_1B_1) = \angle(A_1B_1, PB_1) + \angle(PB_1, C_1B_1) = \angle(A_1C, PC) + \angle(PA, C_1A). \]

On the other hand,

\[\angle(A'B', C'B') = \angle(A'B', BB') + \angle(BB', C'B') = \angle(AA', BA) + \angle(BC, C'C). \]

But the lines $A'A, BA, BC, C'C$ coincide respectively with PA, C_1A, A_1C, PC. So the sums on the right-hand of (2) and (3) are equal, that leads to $\angle(A_1B_1, C_1B_1) = \angle(A'B', C'B')$. Hence (by cyclic shift, once more) also

\[\angle(B_1C_1, A_1C_1) = \angle(B'C', A'C') \text{ and } \angle(C_1A_1, B_1A_1) = \angle(C'A', B'A'). \]

This means that triangles $A_1B_1C_1$ and $A'B'C'$ are similar. \qed

Proof of the Theorem. Let the circles $(AB_1C_1), (BC_1A_1), (CA_1B_1)$ meet at P (see Lemma 2), and let

\[\varphi = \angle(PA_1, BC) = \angle(PB_1, CA) = \angle(PC_1, AB). \]
Let lines \(A_2P, B_2P, C_2P \) meet the circle \((ABC)\) again at \(A_4, B_4, C_4 \), respectively. Since

\[
\angle(A_4A_2, AA_2) = \angle(PA_2, AA_2) = \angle(PC_1, AC_1) = \angle(PC_1, AB) = \varphi,
\]

we have \(\angle(OA_4, OA) = 2\varphi \) (here \(O \) is the center of \((ABC)\)). Hence \(A \) is the image of \(A_4 \) under rotation by \(2\varphi \) about \(O \). The same rotation takes \(B_4 \) to \(B \), and \(C_4 \) to \(C \). Thus triangle \(ABC \) is the image of \(A_4B_4C_4 \) under this rotation, therefore

\[
\angle(A_4B_4, AB) = \angle(B_4C_4, BC) = \angle(C_4A_4, CA) = 2\varphi.
\]

Further, we have \(\angle(AB_4, AB) = \angle(B_2B_4, B_2B) = \varphi \). Hence by (4)

\[
\angle(AB_4, PC_1) = \angle(AB_4, AB) + \angle(AB, PC_1) = \varphi + (-\varphi) = 0,
\]

which means that \(AB_4 \parallel PC_1 \).

Let \(C_5 \) be the intersection of lines \(PC_1 \) and \(A_4B_4 \); define \(A_5, B_5 \) analogously. So \(AB_4 \parallel C_1C_5 \) and, by (5) and (4),

\[
\angle(A_4B_4, PC_1) = \angle(A_4B_4, AB) + \angle(AB, PC_1) = 2\varphi + (-\varphi) = \varphi;
\]

i.e., \(\angle(B_4C_5, C_5C_1) = \varphi \). This combined with \(\angle(C_5C_1, C_1A) = \angle(PC_1, AB) = \varphi \) (see (4)) proves that the quadrilateral \(AB_4C_5C_1 \) is an isosceles trapezoid with \(AC_1 = B_4C_5 \).
Suppose $\overrightarrow{AC_3} = \lambda \overrightarrow{AB}$; then $\overrightarrow{BC_1} = \lambda \overrightarrow{BA}$, and $\overrightarrow{A_4C_5} = \lambda \overrightarrow{A_4B_4}$. In other words, the rotation which maps triangle $A_4B_4C_4$ onto ABC carries C_5 onto C_3. Likewise, it takes A_5 to A_3, and B_5 to B_3. So the triangles $A_3B_3C_3$ and $A_5B_5C_5$ are congruent.

Lines B_4C_5 and PC_5 coincide respectively with A_4B_4 and PC_1. Thus by (6)

$$\angle(B_4C_5, PC_5) = \varphi.$$

Analogously (by cyclic shift) $\varphi = \angle(C_4A_5, PA_5)$, which rewrites as

$$\varphi = \angle(B_4A_5, PA_5).$$
These relations imply that the points P, B_4, C_5, A_5 are concyclic. Analogously P, C_4, A_5, B_5 and P, A_4, B_5, C_5 are concyclic quadruples.

Now it is sufficient to apply Lemma 3 for triangle $A_4B_4C_4$ and points A_5, B_5, C_5. It provides similarity of triangles $A_2B_2C_2$ and $A_5B_5C_5$. This ends the proof of Theorem. \hfill \Box

References

E-mail address: l_em@rambler.ru

Kaluga State University

E-mail address: pkozh@rambler.ru

Moscow Institute of Physics and Technology